首页    期刊浏览 2025年07月15日 星期二
登录注册

文章基本信息

  • 标题:On the Algebraic Complexity of Integer Programming
  • 本地全文:下载
  • 作者:Valentin E. Brimkov ; Stefan S. Dantchev
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2000
  • 卷号:2000
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:In the framework of the Blum-Shub-Smale real number model \cite{BSS}, we study the {\em algebraic complexity} of the integer linear programming problem (ILPR) : Given a matrix ARmn and vectors bRm, dRn, decide if there is xZn such that Axb, where 0xd. We show that there is an Omlogd algorithm for ILPR, when the value of n is fixed. As a consequence, we obtain a tight algebraic complexity bound log1amin , amin=mina1an for the Knapsack problem (KPR) : Given aRn+, decide if there is xZn such that aTx=1, when the dimension n is fixed. We achieve these results in particular through a careful analysis of the algebraic complexity of the Lov\'asz' basis reduction algorithm and Kannan-Bachem's Hermite normal form algorithm, which may be of interest in its own. We also obtain an Omn5lognn+logd depth {\em algebraic decision tree} for ILPR, for every m and n.
  • 关键词:algebraic complexity, integer programming, Knapsack Problem
国家哲学社会科学文献中心版权所有