期刊名称:Applied human science : journal of physiological anthropology
印刷版ISSN:1341-3473
电子版ISSN:1341-3473
出版年度:1998
卷号:17
期号:5
页码:173-179
出版社:日本生理人類学会
其他摘要:The purpose of this study is to investigate the thermophysiological significance of hydrophilic and hydrophobia properties of underwear materials under the influences of profuse sweating produced during severe exercise in the cold. Two kinds of underwear were used: two layers of cotton underwear with two-piece long-sleeved shirt and full-trousers (C), and two layers of polypropylene underwear with two-piece long-sleeved shirt and full-trousers (P). In addition, the subject put on a two-piece ski suit of 100% polyester including 100% polyester padding. Eight adult females volunteered as subjects in this study. The test was performed in a climatic chamber at an ambient air temperature of 2℃ and an air velocity of 0.26 m・s<-1$gt;. The subject exercised on a cycle ergometer at an intensity of 65% maximal oxygen uptake for 30 min and followed by 60 min recovery. The major findings are summarized as follows: 1) The fall of rectal temperature tended to be greater in P during the recovery. 2) The absolute humidity of innermost layer and middle layer was significantly higher in C than in P during the recovery, but the absolute humidity of middle layer and outermost layer was significantly higher in P than in C during the exercise. 3) Clothing microclimate temperature of innermost at back was significantly higher in C during the exercise and recovery. 4) Metabolic heat production for last 30 min during recovery was significantly higher in P. 5) The degree of skin wettedness sensation and sweating sensation for whole body was significantly higher in P during the exercise. It was concluded that the slower evaporation behavior by absorbing of underwear material in the clothing system has a beneficial influence on thermophysiological responses during severe exercise and its recovery in the cold, although the differences were very small.
其他关键词:cotton;polypropylene;clothing microclimate;metabolic heat production