首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:Cause-specific mortality time series analysis: a general method to detect and correct for abrupt data production changes
  • 本地全文:下载
  • 作者:Grégoire Rey ; Albertine Aouba ; Gérard Pavillon
  • 期刊名称:Population Health Metrics
  • 印刷版ISSN:1478-7954
  • 电子版ISSN:1478-7954
  • 出版年度:2011
  • 卷号:9
  • 期号:1
  • 页码:52
  • DOI:10.1186/1478-7954-9-52
  • 语种:English
  • 出版社:BioMed Central
  • 摘要:

    Background

    Monitoring the time course of mortality by cause is a key public health issue. However, several mortality data production changes may affect cause-specific time trends, thus altering the interpretation. This paper proposes a statistical method that detects abrupt changes ("jumps") and estimates correction factors that may be used for further analysis.

    Methods

    The method was applied to a subset of the AMIEHS (Avoidable Mortality in the European Union, toward better Indicators for the Effectiveness of Health Systems) project mortality database and considered for six European countries and 13 selected causes of deaths. For each country and cause of death, an automated jump detection method called Polydect was applied to the log mortality rate time series. The plausibility of a data production change associated with each detected jump was evaluated through literature search or feedback obtained from the national data producers.

    For each plausible jump position, the statistical significance of the between-age and between-gender jump amplitude heterogeneity was evaluated by means of a generalized additive regression model, and correction factors were deduced from the results.

    Results

    Forty-nine jumps were detected by the Polydect method from 1970 to 2005. Most of the detected jumps were found to be plausible. The age- and gender-specific amplitudes of the jumps were estimated when they were statistically heterogeneous, and they showed greater by-age heterogeneity than by-gender heterogeneity.

    Conclusion

    The method presented in this paper was successfully applied to a large set of causes of death and countries. The method appears to be an alternative to bridge coding methods when the latter are not systematically implemented because they are time- and resource-consuming.

国家哲学社会科学文献中心版权所有