首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Modeling of Tool Wear and Surface Roughness under MQL condition-A Neural Approach
  • 本地全文:下载
  • 作者:Syed Mithun Ali ; Dr. Nikhil Ranjan Dhar
  • 期刊名称:Canadian Journal on Artificail Intelligence, Machin Learning and Pattern Recognition
  • 出版年度:2010
  • 卷号:1
  • 期号:2
  • 页码:7-25
  • 出版社:AM Publishers Corporation Canada
  • 摘要:This paper develops an artificial neural network (ANN) model to determine tool wear parameters such as average principal flank wear, average auxiliary flank wear, average maximum flank wear and average surface roughness as a function of cutting speed, feed rate, depth of cut and machining time. The model selects a feed-forward back-propagation ANN with twenty five hidden neurons as the optimum network. We test the model with marching data from a real field. The results show that the model can be useful to forecast tool wear and surface roughness in response to the model parameters under minimum quantity lubrication (MQL) environment.
国家哲学社会科学文献中心版权所有