首页    期刊浏览 2025年12月05日 星期五
登录注册

文章基本信息

  • 标题:From Annotator Agreement to Noise Models
  • 本地全文:下载
  • 作者:Beata Beigman Klebanov ; Eyal Beigman
  • 期刊名称:Computational Linguistics
  • 印刷版ISSN:0891-2017
  • 电子版ISSN:1530-9312
  • 出版年度:2009
  • 卷号:35
  • 期号:4
  • 页码:495-503
  • DOI:10.1162/coli.2009.35.4.35402
  • 语种:English
  • 出版社:MIT Press
  • 摘要:This article discusses the transition from annotated data to a gold standard, that is, a subset that is sufficiently noise-free with high confidence. Unless appropriately reinterpreted, agreement coefficients do not indicate the quality of the data set as a benchmarking resource: High overall agreement is neither sufficient nor necessary to distill some amount of highly reliable data from the annotated material. A mathematical framework is developed that allows estimation of the noise level of the agreed subset of annotated data, which helps promote cautious benchmarking.
国家哲学社会科学文献中心版权所有