首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Classifying Non-Sentential Utterances in Dialogue: A Machine Learning Approach
  • 本地全文:下载
  • 作者:Raquel Fernández ; Jonathan Ginzburg ; Shalom Lappin
  • 期刊名称:Computational Linguistics
  • 印刷版ISSN:0891-2017
  • 电子版ISSN:1530-9312
  • 出版年度:2007
  • 卷号:33
  • 期号:3
  • 页码:397-427
  • DOI:10.1162/coli.2007.33.3.397
  • 语种:English
  • 出版社:MIT Press
  • 摘要:In this article we use well-known machine learning methods to tackle a novel task, namely the classification of non-sentential utterances (NSUs) in dialogue. We introduce a fine-grained taxonomy of NSU classes based on corpus work, and then report on the results of several machine learning experiments. First, we present a pilot study focused on one of the NSU classes in the taxonomy—bare wh -phrases or “sluices”—and explore the task of disambiguating between the different readings that sluices can convey. We then extend the approach to classify the full range of NSU classes, obtaining results of around an 87% weighted F-score. Thus our experiments show that, for the taxonomy adopted, the task of identifying the right NSU class can be successfully learned, and hence provide a very encouraging basis for the more general enterprise of fully processing NSUs.
国家哲学社会科学文献中心版权所有