期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2004
卷号:101
期号:19
页码:7311-7316
DOI:10.1073/pnas.0401779101
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Using total internal reflection fluorescence microscopy, we have developed an assay to monitor individual fusion events between proteoliposomes containing vesicle soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and a supported planar bilayer containing cognate target SNAREs. Approach, docking, and fusion of individual vesicles to the target membrane were quantified by delivery and subsequent lateral spread of fluorescent phospholipids from the vesicle membrane into the target bilayer. Fusion probability was increased by raising divalent cations (Ca2+ and Mg2+). Fusion of individual vesicles initiated in <100 ms after the rise of Ca2+ and membrane mixing was complete in 300 ms. Removal of the N-terminal Habc domain of syntaxin 1A increased fusion probability >30-fold compared to the full-length protein, but even in the absence of the Habc domain, vesicle fusion was still enhanced in response to Ca2+ increase. Our observations establish that the SNARE core complex is sufficient to fuse two opposing membrane bilayers at a speed commensurate with most membrane fusion processes in cells. This real-time analysis of single vesicle fusion opens the door to mechanistic studies of how SNARE and accessory proteins regulate fusion processes in vivo.