期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2004
卷号:101
期号:23
页码:8786-8790
DOI:10.1073/pnas.0402595101
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Although there is no spontaneous regeneration of mammalian spinal axons after injury, they can be enticed to grow if cAMP is elevated in the neuronal cell bodies before the spinal axons are cut. Prophylactic injection of cAMP, however, is useless as therapy for spinal injuries. We now show that the phosphodiesterase 4 (PDE4) inhibitor rolipram (which readily crosses the blood-brain barrier) overcomes inhibitors of regeneration in myelin in culture and promotes regeneration in vivo. Two weeks after a hemisection lesion at C3/4, with embryonic spinal tissue implanted immediately at the lesion site, a 10-day delivery of rolipram results in considerable axon regrowth into the transplant and a significant improvement in motor function. Surprisingly, in rolipram-treated animals, there was also an attenuation of reactive gliosis. Hence, because rolipram promotes axon regeneration, attenuates the formation of the glial scar, and significantly enhances functional recovery, and because it is effective when delivered s.c., as well as post-injury, it is a strong candidate as a useful therapy subsequent to spinal cord injury.