期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2004
卷号:101
期号:28
页码:10404-10409
DOI:10.1073/pnas.0403522101
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Prion diseases are closely associated with the conversion of the cellular prion protein (PrPC) to an abnormal conformer (PrPSc) [Prusiner, S. B. (1998) Proc. Natl. Acad. Sci. USA 95, 13363-13383]. Monoclonal antibodies that bind epitopes comprising residues 96-104 and 133-158 of PrPC potently inhibit this process, presumably by preventing heterodimeric association of PrPC and PrPSc, and suggest that these regions of PrPC may be critical components of the PrPC-PrPSc replicative interface. We reasoned that transplanting PrP sequence corresponding to these regions into a suitable carrier molecule, such as an antibody, could impart specific recognition of disease-associated forms of PrP. To test this hypothesis, polypeptides containing PrP sequence between residues 89-112 or 136-158 were used to replace the extended heavy chain complementarity-determining region 3 of an IgG antibody specific for the envelope glycoprotein of HIV-1. Herein the resulting engineered PrP-IgGs are shown to bind specifically to infective fractions of PrP in mouse, human, and hamster prion-infected tissues, but not to PrPC, other cellular components, or the HIV-1 envelope. PrPSc reactivity was abolished when the sequence of the PrP 89-112 and 136-158 grafts was mutated, scrambled, or N-terminally truncated. Our findings suggest that residues within the 89-112 and 136-158 segments of PrPC are key components of one face of the PrPC-PrPSc complex. PrPSc-specific antibodies produced by the approach described may find widespread application in the study of prion biology and replication and in the detection of infectious prions in human and animal materials.