期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2005
卷号:102
期号:16
页码:5653-5658
DOI:10.1073/pnas.0501623102
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Conduction spectroscopy measures the current I through a nanosystem as a function of the voltage V between two electrodes. The differential conductance, dI/dV, has peaks that can be assigned to resonance conditions with different electronic levels of the system. Between these increments, the current has roughly constant plateaus. We discuss how measurements of the current vs. voltage can be used to perform Boolean operations and hence construct finite state logic machines and combinational circuits. The inputs to the device are the source-drain voltage, including its sign, and a gate voltage applied in a manner analogous to optical Stark spectroscopy. As simple examples, we describe a two-state set-reset machine (a machine whose output depends on the input and also on its present state) and a full adder circuit (a circuit that requires three inputs and provides two outputs).
关键词:conduction spectroscopy ; nanoelectronics ; quantum dots ; single electron transistors ; molecular logic