期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2005
卷号:102
期号:17
页码:6015-6020
DOI:10.1073/pnas.0502006102
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Oligomeric assemblies of the amyloid {beta}-protein (A{beta}) have been implicated in the pathogenesis of Alzheimer's disease as a primary source of neurotoxicity. Recent in vitro studies have suggested that a 10-residue segment, Ala-21-Ala-30, forms a turn-like structure that nucleates the folding of the full-length A{beta}. To gain a mechanistic insight, we simulated A{beta}(21-30) folding by using a discrete molecular dynamics algorithm and a united-atom model incorporating implicit solvent and a variable electrostatic interaction strength (EIS). We found that A{beta}(21-30) folds into a loop-like conformation driven by an effective hydrophobic attraction between Val-24 and the butyl portion of the Lys-28 side chain. At medium EIS [1.5 kcal/mol (1 cal = 4.18 J)], unfolded conformations almost disappear, in agreement with experimental observations. Under optimal conditions for folding, Glu-22 and Asp-23 form transient electrostatic interactions (EI) with Lys-28 that stabilize the loop conformations. Glu-22-Lys-28 is the most favored interaction. High EIS, as it occurs in the interior of proteins and aggregates, destabilizes the packing of Val-24 and Lys-28. Analysis of the unpacked structures reveals strong EI with predominance of the Asp-23-Lys-28 interaction, in agreement with studies of molecular modeling of full-length A{beta} fibrils. The binary nature of the EI involving Lys-28 provides a mechanistic explanation for the linkage of amino acid substitutions at Glu-22 with Alzheimer's disease and cerebral amyloid angiopathy. Substitutions may alter the frequency of Glu-22 or Asp-23 involvement in contact formation and affect the stability of the folding nucleus formed in the A{beta}(21-30) region.
关键词:molecular dynamics ; Alzheimer's disease ; nucleation ; protein folding