首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Supersymmetric Hilbert space
  • 本地全文:下载
  • 作者:G C Rota ; J A Stein
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1990
  • 卷号:87
  • 期号:2
  • 页码:653-657
  • DOI:10.1073/pnas.87.2.653
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:A generalization is given of the notion of a symmetric bilinear form over a vector space, which includes variables of positive and negative signature ("supersymmetric variables"). It is shown that this structure is substantially isomorphic to the exterior algebra of a vector space. A supersymmetric extension of the second fundamental theorem of invariant theory is obtained as a corollary. The main technique is a supersymmetric extension of the standard basis theorem. As a byproduct, it is shown that supersymmetric Hilbert space and supersymplectic space are in natural duality.
国家哲学社会科学文献中心版权所有