首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Isolation and structural characterization of a cDNA clone encoding the human DNA repair protein for O6-alkylguanine
  • 本地全文:下载
  • 作者:K Tano ; S Shiota ; J Collier
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1990
  • 卷号:87
  • 期号:2
  • 页码:686-690
  • DOI:10.1073/pnas.87.2.686
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:O6-Methylguanine-DNA methyltransferase (MGMT; DNA-O6-methylguanine:protein-L-cysteine S-methyltransferase, EC 2.1.1.63 ), a unique DNA repair protein present in most organisms, removes the carcinogenic and mutagenic adduct O6-alkylguanine from DNA by stoichiometrically accepting the alkyl group on a cysteine residue in a suicide reaction. The mammalian protein is highly regulated in both somatic and germ-line cells. In addition, the toxicity of certain alkylating drugs in tumor and normal cells is inversely related to the levels of this protein. The cDNA of the human gene, henceforth named MGMT, has been cloned in an expression vector on the basis of its rescue of a methyltransferase-deficient (ada-) Escherichia coli host. A 22-kDa active methyltransferase encoded entirely by the cDNA contains an amino acid sequence of 61 residues that bears 60-65% similarity with segments of E. coli methyltransferase (products of the ada and ogt genes), which encompass the alkyl-acceptor residues. The human cDNA has no sequence similarity with the ada and ogt genes, due in part to differences in codon usage, and shows no detectable homology with E. coli genomic DNA. However, it hybridizes with distinct restriction fragments of human, mouse, and rat DNAs. The lack of methyltransferase observed in many human cell lines is due to the absence of the MGMT gene or to lack of synthesis and/or stability of its 0.95-kilobase poly(A)+ RNA transcript.
国家哲学社会科学文献中心版权所有