首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:A monoclonal antibody against kinesin inhibits both anterograde and retrograde fast axonal transport in squid axoplasm.
  • 本地全文:下载
  • 作者:S T Brady ; K K Pfister ; G S Bloom
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1990
  • 卷号:87
  • 期号:3
  • 页码:1061-1065
  • DOI:10.1073/pnas.87.3.1061
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:One of our monoclonal antibodies against the heavy chain of bovine kinesin (H2) also recognized the heavy chain of squid kinesin. The immunofluorescence pattern of H2 in axoplasm was similar to that seen in mammalian cells with antibodies specific for kinesin light and heavy chains, indicating that squid kinesin is also concentrated on membrane-bounded organelles. Although kinesin is assumed to be a motor for translocation of membrane-bounded organelles in fast axonal transport, direct evidence has been lacking. Perfusion of axoplasm with purified H2 at 0.1-0.4 mg/ml resulted in a profound inhibition of both the rates and number of organelles moving in anterograde and retrograde directions in the interior of the axoplasm, and comparable inhibition was noted in bidirectional movement along individual microtubules at the periphery. Maximal inhibition developed over 30-60 min. Perfusion with higher concentrations of H2 (greater than 1 mg of IgG per ml) were less effective, whereas perfusion with 0.04 mg of H2 per ml resulted in minimal inhibition. Movement of membrane-bounded organelles after perfusion with comparable levels of irrelevant mouse IgG (0.04 to greater than 1 mg/ml) were not distinguishable from perfusion with buffer controls. Inhibition of fast axonal transport by an antibody specific for kinesin provides direct evidence that kinesin is involved in the translocation of membrane-bounded organelles in axons. Moreover, the inhibition of bidirectional axonal transport by H2 raises the possibility that kinesin may play some role in both anterograde and retrograde axonal transport.
国家哲学社会科学文献中心版权所有