期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1990
卷号:87
期号:6
页码:2087-2091
DOI:10.1073/pnas.87.6.2087
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:We have developed a stable nuclear transformation system for the unicellular green alga Chlamydomonas reinhardtii. Transformation was accomplished by introducing the cloned C. reinhardtii oxygen-evolving enhancer protein 1 (OEE1) gene into C. reinhardtii cells by bombardment with DNA-coated tungsten particles. The recipient strain was an OEE1-deficient, nonphotosynthetic, acetate-requiring mutant, which recovered photosynthetic competence after transformation, and was therefore able to grow in the absence of acetate. Analysis of several transformants indicates that transformation has proceeded via second-site integration of the cloned gene, leaving the endogenous mutant gene intact. In genetic crosses of transformants with wild type, both mutant and wild-type phenotypes were recovered, showing that the photosynthetic competence of transformants was due not to reversion of the original locus but rather to expression of the introduced gene. We suggest that the success of the present system is largely due to using a homologous C. reinhardtii gene, leading to stable maintenance and expression of the gene. Transformation with heterologous genes may be problematic because of poor expression due to an unusual codon bias in C. reinhardtii.