首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Two pharmacologically distinct sodium- and chloride-coupled high-affinity gamma-aminobutyric acid transporters are present in plasma membrane vesicles and reconstituted preparations from rat brain
  • 本地全文:下载
  • 作者:B I Kanner ; A Bendahan
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1990
  • 卷号:87
  • 期号:7
  • 页码:2550-2554
  • DOI:10.1073/pnas.87.7.2550
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Electrogenic sodium- and chloride-dependent gamma-aminobutyric acid (GABA) transport in crude synaptosomal membrane vesicles is partly inhibited by saturating levels of either of the substrate analogues cis-3-aminocyclohexanecarboxylic acid (ACHC) or beta-alanine. However, both of them together potently and fully inhibit the process. Transport of beta-alanine, which exhibits an apparent Km of about 44 microM, is also electrogenic and sodium and chloride dependent and competitively inhibited by GABA with a Ki of about 3 microM. This value is very similar to the Km of 2-4 microM found for GABA transport. On the other hand, ACHC does not inhibit beta-alanine transport at all. Upon solubilization of the membrane proteins with cholate and fractionation with ammonium sulfate, a fraction is obtained which upon reconstitution into proteoliposomes exhibits 4- to 10-fold-increased GABA transport. This activity is fully inhibited by low concentrations of ACHC and is not sensitive at all to beta-alanine. GABA transport in this preparation exhibits an apparent Km of about 2.5 microM and it is competitively inhibited by ACHC (Ki approximately 7 microM). These data indicate the presence of two GABA transporter subtypes in the membrane vesicles: the A type, sensitive to ACHC, and the B type, sensitive to beta-alanine.
国家哲学社会科学文献中心版权所有