期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1990
卷号:87
期号:11
页码:4193-4197
DOI:10.1073/pnas.87.11.4193
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:DNA damage generated by oxygen radicals includes base-free apurinic/apyrimidinic (AP) sites and strand breaks that bear deoxyribose fragments. The yeast Saccharomyces cerevisiae repairs such DNA lesions by using a single major enzyme. We have cloned the yeast structural gene (APN1) encoding this AP endonuclease/3'-repair diesterase by immunological screening of a yeast genomic DNA expression library in lambda gt11. Gene disruption experiments confirm that the Apn1 protein accounts for greater than or equal to 97% of both AP endonuclease and DNA 3'-repair diesterase activities in yeast cell-free extracts. The DNA and predicted amino acid sequences for the APN1 gene are homologous to those for the nfo gene encoding DNA endonuclease IV of Escherichia coli. This conservation of structure between a eukaryotic enzyme and its prokaryotic counterpart underscores the fundamental nature of their roles in DNA repair.