首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Funnel-web spider venom and a toxin fraction block calcium current expressed from rat brain mRNA in Xenopus oocytes.
  • 本地全文:下载
  • 作者:J W Lin ; B Rudy ; R Llinás
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1990
  • 卷号:87
  • 期号:12
  • 页码:4538-4542
  • DOI:10.1073/pnas.87.12.4538
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Injection of rat brain mRNA into Xenopus oocytes has been shown to induce a calcium current (ICa) that is insensitive to dihydropyridine and omega-conotoxin. We examined the effect of funnel-web spider venom on two aspects of this expressed ICa: (i) the calcium-activated chloride current [ICl(Ca)] and (ii) the currents carried by barium ions through calcium channels (IBa). In the presence of 1.8 mM extracellular calcium, ICl(Ca) tail current became detectable between -30 and -40 mV from a holding potential of -80 mV and reached a maximal amplitude between 0 and +10 mV. Total spider venom partially (83%) and reversibly blocked the calcium-activated chloride current without changing its voltage sensitivity. A chromatographic toxin fraction from the venom also blocked this current (64%). The venom had a minimal effect on INa and IK. Direct investigation of inward current mediated by calcium channels was carried out in high-barium solution. IBa had a higher threshold of activation (-30 to -20 mV) and reached its maximal amplitude at about +20 mV. Total venom or a partly purified chromatographic toxic fraction blocked IBa partially and reversibly without changing its current-voltage characteristics. Furthermore, the extent of the total venom block depended on the concentration of extracellular barium. Only 35% of the IBa was blocked in 60 mM Ba2+, whereas the block increased to 65% and 71%, respectively, for 40 and 20 mM Ba2+. On the basis of these results, we propose that the calcium channels expressed from rat brain mRNA in Xenopus oocytes is similar to the recently discovered P-type channels.
国家哲学社会科学文献中心版权所有