期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1990
卷号:87
期号:16
页码:6181-6185
DOI:10.1073/pnas.87.16.6181
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Escherichia coli responds to superoxide-generating agents by inducing approximately 40 proteins. We have identified a genetic locus, soxR (superoxide response), that positively regulates 9 of these proteins during superoxide stress. Induction under soxR control is at the transcriptional level, as shown with lac fusions to five paraquat-inducible promoters. Members of the soxR regulon include at least three proteins with demonstrable antioxidant roles: Mn-containing superoxide dismutase (which destroys superoxide radicals), endonuclease IV (which repairs radical-induced damages in DNA), and glucose-6-phosphate dehydrogenase (which produces NADPH). Induction of the soxR regulon also leads to diminished levels of the major outer membrane protein OmpF and alteration of the small-subunit ribosomal protein S6. These latter changes confer resistance to a variety of antibiotics. The soxR regulon may thus operate as an inducible defense against xenobiotics in general.