首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Dependence of hormone secretion on activation-inactivation kinetics of voltage-sensitive Ca2+ channels in pituitary gonadotrophs.
  • 本地全文:下载
  • 作者:S S Stojilković ; T Iida ; M A Virmani
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1990
  • 卷号:87
  • 期号:22
  • 页码:8855-8859
  • DOI:10.1073/pnas.87.22.8855
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The relationships between the activation status of voltage-sensitive Ca2+ channels and secretory responses were analyzed in perfused rat gonadotrophs during stimulation by high extracellular K+ concentration ([K+]e) or the physiological agonist, gonadotropin-releasing hormone (GnRH). Increase of [K+]e to 50 mM evokes an on-off secretory response, with a rapid rise in luteinizing hormone (LH) secretion to a peak at 35 sec (on response) followed by an exponential decrease to the steady-state level. Cessation of K+ stimulation elicits a transient (off) response followed by an exponential decrease to the basal level. The LH response to high [K+]e is nifedipine-sensitive and its amplitude depends on membrane potential. There is a close relationship between the LH secretory response to high [K+]e and the amplitude of the inward Ca2+ current measured at 100 msec in whole-cell patch clamp experiments. In addition, the profile of the LH secretory response is similar to that of the response of intracellular Ca2+ concentration ([Ca2+]i) in K(+)-stimulated cells. In Ca2(+)-deficient medium, the effect of high [K+]e is abolished; subsequent elevation of [Ca2+]e during the K+ pulse is followed by restoration of the on response, but with reduced magnitude. Agonist stimulation during the steady-state phase of the [K+]e pulse or after repetitive stimulation by high [K+]e elicited biphasic [Ca2+]i and secretory responses with a significantly reduced plateau phase; conversely, K(+)-induced LH release was reduced in cells treated with desensitizing doses of GnRH. These findings indicate that depolarization-induced changes in the status of voltage-sensitive Ca2+ channels determine the profiles of [Ca2+]i and LH responses to stimulation by high [K+]e; the initial activation of dihydropyridine-sensitive Ca2+ channels is clearly dependent on membrane potential, whereas their subsequent inactivation depends on increased [Ca2+]i. Such inactivation of voltage-sensitive Ca2+ channels also occurs during GnRH action and may represent an additional regulatory mechanism to limit the entry of extracellular Ca2+ during prolonged or frequent agonist stimulation.
国家哲学社会科学文献中心版权所有