首页    期刊浏览 2024年09月15日 星期日
登录注册

文章基本信息

  • 标题:Sequence requirement for peptide recognition by rat brain p21ras protein farnesyltransferase
  • 本地全文:下载
  • 作者:Y Reiss ; S J Stradley ; L M Gierasch
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1991
  • 卷号:88
  • 期号:3
  • 页码:732-736
  • DOI:10.1073/pnas.88.3.732
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:We tested 42 tetrapeptides for their ability to bind to the rat brain p21ras protein farnesyltransferase as estimated by their ability to compete with p21Ha-ras in a farnesyltransfer assay. Peptides with the highest affinity had the structure Cys-A1-A2-X, where positions A1 and A2 are occupied by aliphatic amino acids and position X is occupied by a COOH-terminal methionine, serine, or phenylalanine. Charged residues reduced affinity slightly at the A1 position and much more drastically at the A2 and X positions. Effective inhibitors included tetrapeptides corresponding to the COOH termini of all animal cell proteins known to be farnesylated. In contrast, the tetrapeptide Cys-Ala-Ile-Leu (CAIL), which corresponds to the COOH termini of several neural guanine nucleotide binding (G) protein gamma subunits, did not compete in the farnesyl-transfer assay. Inasmuch as several of these proteins are geranylgeranylated, the data suggest that the two isoprenes (farnesyl and geranylgeranyl) are transferred by different enzymes. A biotinylated heptapeptide corresponding to the COOH terminus of p21Ki-rasB was farnesylated, suggesting that at least some of the peptides serve as substrates for the transferase. The data are consistent with a model in which a hydrophobic pocket in the protein farnesyltransferase recognizes tetrapeptides through interactions with the cysteine and the last two amino acids.
国家哲学社会科学文献中心版权所有