首页    期刊浏览 2024年10月05日 星期六
登录注册

文章基本信息

  • 标题:Phosphorylation of the DNA-binding domain of nonhistone high-mobility group I protein by cdc2 kinase: reduction of binding affinity
  • 本地全文:下载
  • 作者:R Reeves ; T A Langan ; M S Nissen
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1991
  • 卷号:88
  • 期号:5
  • 页码:1671-1675
  • DOI:10.1073/pnas.88.5.1671
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Mammalian high-mobility group I nonhistone protein (HMG-I) is a DNA-binding chromatin protein that has been demonstrated both in vitro and in vivo to be localized to the A + T-rich sequences of DNA. Recently an unusual binding domain peptide, "the A.T-hook" motif, that mediates specific interaction of HMG-I with the minor groove of DNA in vitro has been described. Inspection of the A.T-hook region of the binding domain showed that it matches the consensus sequence for phosphorylation by cdc2 kinase. Here we demonstrate that HMG-I is a substrate for phosphorylation by purified mammalian cdc2 kinase in vitro. The site of phosphorylation by this enzyme is a threonine residue at the amino-terminal end of the principal binding-domain region of the protein. Labeling of mitotically blocked mouse cells with [32P]phosphate demonstrates that this same threonine residue in HMG-I is also preferentially phosphorylated in vivo. Competition binding studies show that cdc2 phosphorylation of a synthetic binding-domain peptide significantly weakens its interaction with A + T-rich DNA in vitro, and a similar weakening of DNA binding has been observed for intact murine HMG-I protein phosphorylated by the kinase in vitro. These findings indicate that cdc2 phosphorylation may significantly alter the DNA-binding properties of the HMG-I proteins. Because many cdc2 substrates are DNA-binding proteins, these results further suggest that alteration of the DNA-binding affinity of a variety of proteins is an important general component of the mechanism by which cdc2 kinase regulates cell cycle progression.
国家哲学社会科学文献中心版权所有