首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Clonal analysis of hematopoietic stem-cell differentiation in vivo.
  • 本地全文:下载
  • 作者:L G Smith ; I L Weissman ; S Heimfeld
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1991
  • 卷号:88
  • 期号:7
  • 页码:2788-2792
  • DOI:10.1073/pnas.88.7.2788
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Previous work has shown that the 0.02-0.05% of adult mouse bone marrow cells that bear the cell surface phenotype Thy-1loLin-Sca-1+ are enriched 1000- to 2000-fold for hematopoietic stem-cell activity in a variety of assays. When 50-100 cells of this phenotype are injected into an irradiated animal, they can permanently repopulate the entire hematopoietic system. In the present study, limiting-dilution and single-cell experiments were used to address the question of how individual Thy-1loLin-Sca-1+ stem cells contribute to repopulation of the hematopoietic system following irradiation. We calculated that 1 of 13 Thy-1loLin-Sca-1+ cells formed a clone comprising greater than 1% of peripheral white blood cells 3-7 weeks after injection. The majority of these clones included both lymphoid and myeloid lineages. Approximately one-third of the clones continued to produce new blood cells for 9 weeks or more, but the remainder disappeared earlier, including many that were multilineage. Thus, while the majority of Thy-1loLin-Sca-1+ bone marrow cells whose progeny are detected in the in vivo repopulation assay are pluripotential, only a subset undergo long-term self-renewal in vivo. Repopulation appears to be oligoclonal when limiting numbers of Thy-1loLin-Sca-1+ cells are injected. However, the number of clones contributing to hematopoiesis increases in proportion to the number of Thy-1loLin-Sca-1+ cells injected, bringing into question the notion that steady-state hematopoiesis in normal individuals is oligoclonal.
国家哲学社会科学文献中心版权所有