首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:CD3 stimulation causes phosphorylation of phospholipase C-gamma 1 on serine and tyrosine residues in a human T-cell line.
  • 本地全文:下载
  • 作者:D J Park ; H W Rho ; S G Rhee
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1991
  • 卷号:88
  • 期号:12
  • 页码:5453-5456
  • DOI:10.1073/pnas.88.12.5453
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The human T-cell line Jurkat was found to contain at least two immunologically distinct isoforms of inositol phospholipid-specific phospholipase C (PLC), PLC-beta 1 and PLC-gamma 1. Treatment of Jurkat cells with antibody to CD3 led to phosphorylation of PLC-gamma 1 but not of PLC-beta 1. The phosphorylation of PLC-gamma 1 occurred rapidly and transiently on both serine and tyrosine residues; tyrosine phosphorylation reached a maximum level less than 1 min after stimulation and decreased rapidly, both in the presence and in the absence of orthovanadate. Two-dimensional phosphopeptide map analysis revealed that the major sites of tyrosine and serine phosphorylation in PLC-gamma 1 from activated Jurkat cells are the same as those in PLC-gamma 1 from cells treated with peptide growth factors such as epidermal growth factor and platelet-derived growth factor. Previously, it has been shown that multiple phosphorylation of PLC-gamma 1 by the growth factor receptor tyrosine kinases leads to activation of PLC-gamma 1. Thus, the current data suggest that inositol phospholipid hydrolysis triggered by the T-cell antigen receptor-CD3 complex is due, at least in part, to activation of PLC-gamma 1 and that the mechanism by which this activation is achieved involves phosphorylation of multiple tyrosine residues on PLC-gamma 1 by a nonreceptor tyrosine kinase coupled to the T-cell antigen receptor-CD3 complex.
国家哲学社会科学文献中心版权所有