标题:Xeroderma pigmentosum variant cells are less likely than normal cells to incorporate dAMP opposite photoproducts during replication of UV-irradiated plasmids
期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1991
卷号:88
期号:17
页码:7810-7814
DOI:10.1073/pnas.88.17.7810
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Xeroderma pigmentosum (XP) variant patients show the clinical characteristics of the disease, with increased frequencies of skin cancer, but their cells have a normal, or nearly normal, rate of nucleotide excision repair of UV-induced DNA damage and are only slightly more sensitive than normal cells to the cytotoxic effect of UV radiation. However, they are significantly more sensitive to its mutagenic effect. To examine the mechanisms responsible for this hypermutability, we transfected an XP variant cell line with a UV-irradiated (at 254 nm) shuttle vector carrying the supF gene as a target for mutations, allowed replication of the plasmid, determined the frequency and spectrum of mutations induced, and compared the results with those obtained previously when irradiated plasmids carrying the same target gene replicated in a normal cell line [Bredberg, A., Kraemer, K. H. & Seidman, M. M. (1986) Proc. Natl. Acad. Sci. USA 83, 8273-8277]. The frequency of mutants increased linearly with dose, but with a slope 5 times steeper than that seen with normal cells. Sequence analysis of the supF gene showed that 52 of 53 independent mutants generated in the XP variant cells contained base substitutions, with 62 of 64 of the substitutions involving a dipyrimidine. Twenty-eight percent of the mutations involved A.T base pairs, with the majority found at position 136, the middle of a run of three A.T base pairs. (In the normal cells, this value was only 11%.) If the rate of excision of lesions from supF in the two cell lines is equal, our data suggest that XP variant cells are less likely than normal cells to incorporate dAMP opposite bases involved in photo-products. If such incorporation also occurs during replication of chromosomal DNA, this could account for the hypermutability of XP variant cells with UV irradiation.