首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Double-stranded RNA-dependent RNase activity associated with human immunodeficiency virus type 1 reverse transcriptase.
  • 本地全文:下载
  • 作者:H Ben-Artzi ; E Zeelon ; M Gorecki
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1992
  • 卷号:89
  • 期号:3
  • 页码:927-931
  • DOI:10.1073/pnas.89.3.927
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Early events in the retroviral replication cycle include the conversion of viral genomic RNA into linear double-stranded DNA. This process is mediated by the reverse transcriptase (RT), a multifunctional enzyme that possesses RNA-dependent DNA polymerase, DNA-dependent DNA polymerase, and RNase H activities. In the course of studies of a recombinant RT of human immunodeficiency virus type 1 (HIV-1), we observed an additional, unexpected activity of the enzyme. The purified RT catalyzes a specific cleavage in HIV-1 RNA hybridized to tRNALys, the primer for HIV-1 reverse transcription. The cleavage at the primer binding site (PBS) of HIV RNA is dependent on the double-stranded structure of the HIV RNA-tRNALys complex. This RNase activity appears to be distinct from the RNase H activity of HIV-1 RT, as the substrate specificity and the products of the two activities are different. Moreover, Escherichia coli RNase H and avian myeloblastosis virus RT are unable to cleave the HIV RNA-tRNALys complex. We refer to this unusual activity as RNase D. Two lines of evidence indicate that the specific RNase D activity is an integral part of recombinant HIV RT. The specific RNase D activity comigrates with the other RT activities, DNA polymerase, and RNase H upon filtration on a Superose 6 gel column or chromatography on a phosphocellulose column. Moreover, three recombinant HIV-1 RT preparations expressed and purified in different laboratories by various procedures exhibit RNase D activity. Sequence analysis indicated that RNase D activity cleaves the substrate HIV-1 RNA-tRNALys at two distinct sites within the PBS sequence 5'-UGGCGCCCGA decreases ACAG decreases GGAC-3'. The sequence specificity of RNase D activity suggests that it might be involved in two stages during the reverse transcription process: displacement of the PBS to enable copying of tRNALys sequences into plus-strand DNA or to facilitate the second template switch, which was postulated to occur at the PBS sequence.
国家哲学社会科学文献中心版权所有