期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1999
卷号:96
期号:1
页码:238-241
DOI:10.1073/pnas.96.1.238
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:The viability of boron neutron capture therapy depends on the development of tumor-targeting agents that contain large numbers of boron-10 (10B) atoms and are readily taken up by cells. Here we report on the selective uptake of homogeneous fluorescein-labeled nido-carboranyl oligomeric phosphate diesters (nido-OPDs) by the cell nucleus and their long-term retention after their delivery into the cytoplasm of TC7 cells by microinjection. All nido-OPDs accumulated in the cell nucleus within 2 h after microinjection. However, nido-OPDs in which the carborane cage was located on a side chain attached to the oligomeric backbone were redistributed between both the cytoplasm and nucleus after 24 h of incubation, whereas nido-OPDs in which the carborane cage was located along the oligomeric backbone remained primarily in the nucleus. Furthermore, cell-free incubation of digitonin-permeabilized TC7 cells with the nido-OPDs resulted in nuclear accumulation of the compounds, thus corroborating the microinjection studies. Our observation of fluorescence primarily located in the cell nucleus indicates that nuclear-specific uptake of sufficient amounts of 10B for effective boron neutron capture therapy ({approx}108-109 10B atoms/tumor cell) via nido-OPDs is achievable.