期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1999
卷号:96
期号:3
页码:1036-1041
DOI:10.1073/pnas.96.3.1036
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Dendritic cells (DCs) are unique in their ability to stimulate T cells and initiate adaptive immunity. Injection of mice with the cytokine Flt3-ligand (FL) dramatically expands mature lymphoid and myeloid-related DC subsets. In contrast, injection of a polyethylene glycol-modified form of granulocyte/macrophage colony-stimulating factor (GM-CSF) into mice only expands the myeloid-related DC subset. These DC subsets differ in the cytokine profiles they induce in T cells in vivo. The lymphoid-related subset induces high levels of the Th1 cytokines interferon {gamma} and interleukin (IL)-2 but little or no Th2 cytokines. In contrast, the myeloid-related subset induces large amounts of the Th2 cytokines IL-4 and IL-10, in addition to interferon {gamma} and IL-2. FL- or GM-CSF-treated mice injected with soluble ovalbumin display dramatic increases in antigen-specific antibody titers, but the isotype profiles seem critically dependent on the cytokine used. Although FL treatment induces up to a 10,000-fold increase in ovalbumin-specific IgG2a and a more modest increase in IgG1 titers, GM-CSF treatment favors a predominantly IgG1 response with little increase in IgG2a levels. These data suggest that distinct DC subsets have strikingly different influences on the type of immune response generated in vivo and may thus be targets for pharmacological intervention.