期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1982
卷号:79
期号:13
页码:4045-4049
DOI:10.1073/pnas.79.13.4045
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:It is possible, by using Fourier-transform infrared (FTIR) difference spectroscopy, to detect the conformational changes occurring in both the protein and the chromophore of bacteriorhodopsin during the photocycle. In contrast to Raman spectroscopy, a laser is unnecessary and hence the problem of a perturbing probe beam is eliminated. Furthermore, the relatively high signal-to-noise ratio obtainable with FTIR enables measurements to be made in minutes over a large spectral range. In the study reported in this paper, we used this method to examine the state of protonation of the retinylidene Schiff base in light-adapted bR570 and in K, the first intermediate in the photocycle. Resonance Raman spectroscopy provides evidence that bR570 is protonated, but these results have been questioned on the basis of theoretical and experimental grounds. FTIR difference spectral changes in the bR570-to-K transition clearly indicate that bR570 contains a protonated Schiff base. In contrast, the K intermediate displays a Schiff base that is altered but still is associated to some degree with a proton. Because the low-temperature FTIR difference spectrum of bR570 and K is similar to the recently reported low-temperature resonance Raman spectra of bR570 and K [Braiman, M. & Mathies, R. (1982) Proc. Natl. Acad. Sci. USA 79, 403-407], we can assign most, but not all, vibrational changes in the bR570-to-K transition to the chromophore. These results are consistent with a simple model of the first step in the photocycle which involves a movement of the Schiff base proton away from a counterion.