期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1982
卷号:79
期号:15
页码:4818-4822
DOI:10.1073/pnas.79.15.4818
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Microinjection into an axon of an identified invertebrate neuron is shown to be a useful technique for analyzing the mechanisms of fast axonal transport. It permits direct assessment of the effect of agents that cannot permeate the plasma membrane on the translocation of material in the axon. The actin filament depolymerizer DNase I, when injected into the axon of the Aplysia neuron R2, caused a local block of fast transport of [3H]glycoprotein. Two agents that should interfere with the functioning of actin filaments without causing extensive depolymerization, tne N-ethylmaleimide-modified nuclease S1 fragment of myosin (injected) and dihydrocytochalasin B (applied externally). had no effect. Together these results suggest that actin plays a structural role in the axonal cytoskeleton rather than a role in transport force generation, the effect of DNase I being mediated by structural disordering of the axoplasm. Experiments were also done with inhibitors of dynein, the microtubule-associated ATPase. erythro-9-[3-(2-Hydroxynonyl)]adenine blocked transport but vanadate was ineffective.