期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1982
卷号:79
期号:19
页码:6033-6037
DOI:10.1073/pnas.79.19.6033
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Fluid and electrolyte transport by epithelial cells in vitro can be recognized by the ability of cultured cells to form domes and by the electrical properties of monolayer cultures. Pulmonary alveolar epithelial cells are thought to be partially responsible for fluid movement in the fetal lung, but their role in electrolyte transport in the adult lung is not known. We isolated alveolar type II cells from adult rat lung and maintained them on plastic culture dishes alone, on plastic culture dishes coated with an extracellular matrix, and on collagen-coated Millipore filters. Numerous large domes were formed on culture dishes coated with the extracellular matrix; smaller domes were formed on uncoated plastic culture dishes. Sodium butyrate (3 mM) stimulated dome formation. Transmission electron microscopy showed that the epithelial cells had flattened but still retained lamellar inclusions and that the cells were polarized with microvilli on the apical surface facing the culture medium. The electrical properties of the monolayers maintained on collagen-coated Millipore filters were tested in two laboratories. The transepithelial potential differences were 0.7 +/- 0.1 mV (24 filters, seven experiments) and 1.3 +/- 0.1 mV (13 filters, two experiments) apical side negative, and the corresponding resistances were 217 +/- 11 ohm X cm2 and 233 +/- 12 ohm X cm2. Terbutaline (10 microM) produced a biphasic response with a transient decrease and then a sustained increase in potential difference. Amiloride (0.1 mM) completely abolished the potential difference when it was added to the apical side but not when it was added to the basal side, whereas 1 mM ouabain inhibited the potential difference more effectively from the basal side. Thus, type II cells form a polarized epithelium in culture, and these cells actively transport electrolytes in vitro.