期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1983
卷号:80
期号:4
页码:988-992
DOI:10.1073/pnas.80.4.988
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Long-duration Ca action potentials induced in crustacean muscle fibers after prolonged exposure to quaternary ammonium ions are accompanied by attenuated tensions with unique time courses. The tensions have three phases. The initial phase, correlated with the upstroke of the spike, is a rapid increase in tension followed by relaxation to or near to resting level (on-tension). In the second phase, tension rises slowly as the spike plateau declines. The final phase is another rapid increase and decay in tension that is correlated with termination of the action potential (off-tension). To observe these tensions, fibers must be exposed to 50-100 mM tetrabutylammonium ion for about 1 hr or to lower concentrations for longer periods (e.g., 5 mM for 20-30 hr). To obtain a similar response in fibers treated with tetraethylammonium ion, higher concentrations or longer soaking periods, or both, are required. Because neither caffeine-induced tensions in intact fibers nor contractile protein and sarcoplasmic reticulum function in skinned fibers were modified by quaternary ammonium ions, their site of action appears to be limited to surface or transverse tubular system membranes, or both. The unique tensions can be explained by considering the mode by which quaternary ammonium ions block K channels in conjunction with a scheme in which activation of K channels within the transverse tubular system controls the driving force for influx of Ca ions.