期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1983
卷号:80
期号:5
页码:1179-1183
DOI:10.1073/pnas.80.5.1179
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Photosystem I reaction center was isolated from the cyanobacterium Mastigocladus laminosus. It contained four different subunits with molecular masses (as determined by sodium dodecyl sulfate gels) of about 70,000 (subunit I), 16,000 (subunit II), 11,000 (subunit III), and 10,000 (subunit IV) daltons. The purified reaction center contained about 100 chlorophyll a molecules per P700; however, they could be readily depleted down to about 50 chlorophyll a per P700 without loss in the photochemical activities. The reaction center was active in cytochrome c photooxidation, but the photooxidation of an acidic cytochrome, like the Euglena cytochrome 552, required the presence of cations. The purified reaction center was found to be similar in several respects to the photosystem I reaction centers from higher plants and, especially, to the one isolated from green algae. Subunit I appeared on sodium dodecyl sulfate gels in the same position and possessed the same shape of an apparent double band as the corresponding subunits I of green plants and of algae. Subunits I and II of photosystem I reaction centers from Mastigocladus, higher plants, and green algae showed immunological crossreactivity. This observation might serve as biochemical evidence for the common evolution of the photosystem I reaction centers. In higher plants and green algae subunit II is a product of cytoplasmic ribosomes and therefore, a high degree of homology should have been preserved upon transfer of its gene from the prokaryote to the nucleus of the eukaryotes.