首页    期刊浏览 2024年10月07日 星期一
登录注册

文章基本信息

  • 标题:Selenium and vitamin E inhibit radiogenic and chemically induced transformation in vitro via different mechanisms
  • 本地全文:下载
  • 作者:C Borek ; A Ong ; H Mason
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1986
  • 卷号:83
  • 期号:5
  • 页码:1490-1494
  • DOI:10.1073/pnas.83.5.1490
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Results from in vivo and in vitro studies showing that antioxidants may act as anticarcinogens support the role of active oxygen in carcinogenesis and provide impetus for exploring the functions of dietary antioxidants in cancer prevention by using in vitro models. We examined the single and combined effects of selenium, a component of glutathione peroxidase, and vitamin E, a known antioxidant, on cell transformation induced in C3H/10T-1/2 cells by x-rays, benzo[a]pyrene, or tryptophan pyrolysate and on the levels of cellular scavenging systems and peroxide destruction. Incubation of C3H/10T-1/2 cells with 2.5 microM Na2SeO3 (selenium) or with 7 microM alpha-tocopherol succinate (vitamin E) 24 hr prior to exposure to x-rays or the chemical carcinogens resulted in an inhibition of transformation by each of the antioxidants with an additive-inhibitory action when the two nutrients were combined. Cellular pretreatment with selenium resulted in increased levels of cellular glutathione peroxidase, catalase, and nonprotein thiols (glutathione) and in an enhanced destruction of peroxide. Cells pretreated with vitamin E did not show these biochemical effects, and the combined pretreatment with vitamin E and selenium did not augment the effect of selenium on these parameters. The results support our earlier studies showing that free radical-mediated events play a role in radiation and chemically induced transformation. They indicate that selenium and vitamin E act alone and in additive fashion as radioprotecting and chemopreventing agents. The results further suggest that selenium confers protection in part by inducing or activating cellular free-radical scavenging systems and by enhancing peroxide breakdown while vitamin E appears to confer its protection by an alternate complementary mechanism.
国家哲学社会科学文献中心版权所有