首页    期刊浏览 2024年09月07日 星期六
登录注册

文章基本信息

  • 标题:Calcium entry into the inositol 1,4,5-trisphosphate-releasable calcium pool is mediated by a GTP-regulatory mechanism
  • 本地全文:下载
  • 作者:J M Mullaney ; M Yu ; T K Ghosh
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1988
  • 卷号:85
  • 期号:8
  • 页码:2499-2503
  • DOI:10.1073/pnas.85.8.2499
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Intracellular Ca2+ release activated by inositol 1,4,5-trisphosphate (InsP3) plays a pivotal role in Ca2+ signaling in cells. A controlling mechanism for InsP3-induced Ca2+ movements is suggested by results showing that the InsP3-releasable Ca2+ pool is directly modified by a specific and sensitive GTP-regulated Ca2+-translocating process. By using saponin-permeabilized N1E-115 neuroblastoma cells or DDT1MF-2 smooth muscle-derived cells, InsP3 releases 30-50% of Ca2+ accumulated through intracellular high-affinity ATP-dependent Ca2+-pumping activity. Oxalate-promoted Ca2+ uptake is reversed by InsP3, indicating oxalate permeability of the InsP3-releasable pool, which is consistent with this compartment being the endoplasmic reticulum. GTP (10 microM) activates release of 50-70% of accumulated Ca2+ from cells. In the presence of 5-10 mM oxalate, GTP induces a biphasic Ca2+ flux response; initially (1-2 min) GTP induces rapid Ca2+ release followed thereafter by a profound increase in Ca2+ uptake. Thus, GTP-activated Ca2+ influx and efflux compete for Ca2+ access to the oxalate-permeable Ca2+ pool. The nonadditive effects of InsP3 and GTP suggest that InsP3 releases Ca2+ from a subcompartment of the GTP-releasable pool. Most significantly, InsP3 is observed to block the GTP-activated uptake phase in the presence of oxalate, indicating that GTP induces Ca2+ entry into the pool from which InsP3 activates release. Hence, the results provide direct evidence that loading of Ca2+ into the InsP3-sensitive Ca2+ pool is controlled by a GTP-regulated Ca2+-translocating mechanism. Such a process could be significant in regulating the extent and duration of the InsP3-induced Ca2+ signal, a crucial step in the inositol phospholipid signaling pathway.
国家哲学社会科学文献中心版权所有