标题:Allelic variants of acetylcholinesterase: genetic evidence that all acetylcholinesterase forms in avian nerves and muscles are encoded by a single gene
期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1988
卷号:85
期号:20
页码:7805-7809
DOI:10.1073/pnas.85.20.7805
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Two acetylcholinesterase (AcChoEase) polypeptide chains, alpha and beta, are expressed in avian nerves and muscles with apparent molecular masses of 110 and 100 kDa, respectively. We now show that individual quails express alpha, beta, or both AcChoEase polypeptide chains. By mating studies we show that the two AcChoEase polypeptides are autosomal and segregate as codominant alleles in classical Mendelian fashion. Biochemical studies of the two allelic AcChoEase polypeptides indicate that they have the same turnover number, have the same Km for acetylcholine, are immunoprecipitated to the same extent with a monoclonal anti-AcChoEase antibody, and can assemble with equal efficiency into multimeric forms. Thus there are no obvious functional differences between the two alleles. In heterozygotes, the rates of synthesis of the two polypeptides are identical, suggesting that there are no differences in expression of these two genes. Within an individual, nerves and muscles always express the same AcChoEase forms isolated from muscle indicates that all AcChoEase forms are comprised of the same allelic polypeptide chains. In contrast to the nicotinic acetylcholine receptors that appear to be encoded by complex multigene families, our studies on AcChoEase show that all forms of this important synaptic component in electrically excitable cells are encoded by a single gene. Thus differences in assembly and localization of the multiple synaptic forms of AcChoEase must arise through posttranscriptional events, posttranslational modifications of a similar AcChoEase polypeptide chain or both.