期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1989
卷号:86
期号:16
页码:6417-6420
DOI:10.1073/pnas.86.16.6417
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:A single-base deletion in the single-copy vasopressin gene is the cause of diabetes insipidus in the homozygous Brattleboro rat (di/di). It results in the synthesis of an altered vasopressin precursor of which the axonal transport is blocked. Paradoxically, a small number of solitary hypothalamic neurons displays all the immunoreactivities of the wild-type vasopressin precursor (i.e., vasopressin, neurophysin, and a glycopeptide). In the present paper we provide evidence that these neurons have undergone a switch to a genuine heterozygous (di/+) phenotype; i.e., they contain the immunoreactivities of both the wild-type and the mutated vasopressin precursors. In the neural lobe, glycopeptide fibers are also present, showing that axonal transport of the wild-type precursor is restored. Moreover, the number of neurons displaying this di/+ phenotype increases markedly and in a linear way (from 0.1% up to 3% of the vasopressin cells) with age. These findings indicate that after mitotic division has ceased, genomic alterations occur in somatic neurons in vivo. The molecular event generating the di/+ phenotype in the di/di animal could involve a somatic intrachromosomal gene conversion between the homologous exons of the vasopressin and the related oxytocin genes.