首页    期刊浏览 2024年05月20日 星期一
登录注册

文章基本信息

  • 标题:Role of Ca2+ channels in the ability of membrane depolarization to prevent neuronal death induced by trophic-factor deprivation: evidence that levels of internal Ca2+ determine nerve growth factor dependence of sympathetic ganglion cells
  • 本地全文:下载
  • 作者:T Koike ; D P Martin ; E M Johnson
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1989
  • 卷号:86
  • 期号:16
  • 页码:6421-6425
  • DOI:10.1073/pnas.86.16.6421
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Sympathetic neurons depend on nerve growth factor (NGF) for their survival both in vivo and in vitro; these cells die upon acute deprivation of NGF. We studied the effects of agents that cause membrane depolarization on neuronal survival after NGF deprivation. High-K+ medium (greater than or equal to 33 mM) prevented cell death; the effect of K+ was dose-dependent (EC50 = 21 mM). The protection by high K+ was abolished either by withdrawal of extracellular Ca2+ or by preloading the cells with a Ca2+ chelator. The involvement of Ca2+ flux across membranes in high-K+ saving of NGF-deprived neurons was also supported by experiments using Ca2+-channel antagonists and agonists. The Ca2+ antagonists nimodipine and nifedipine effectively blocked the survival-promoting effect of high K+. The Ca2+ agonists Bay K 8644 and (S)-202-791 did not by themselves save neurons from NGF deprivation but did strongly augment the effect of high K+; EC50 was shifted from 21 mM to 13 mM. These data suggest that dihydropyridine-sensitive L-type Ca2+ channels play a major role in the high-K+ saving. The depolarizing agents choline (EC50 = 1 mM) and carbamoylcholine (EC50 = 1 microM), acting through nicotinic cholinergic receptors, also rescued NGF-deprived neurons. The saving effect of nicotinic agonists was not blocked by withdrawal of extracellular Ca2+ but was counteracted by a chelator of intracellular Ca2+, suggesting the possible involvement of Ca2+ release from internal stores. Based on these findings we propose a "Ca2+ set-point hypothesis" for the degree of trophic-factor dependence of sympathetic neurons in vitro.
国家哲学社会科学文献中心版权所有