期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1971
卷号:68
期号:11
页码:2826-2829
DOI:10.1073/pnas.68.11.2826
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:The conversion of single-stranded DNA of bacteriophage M13 to the double-stranded replicative form in Escherichia coli is blocked by rifampicin, an antibiotic that specifically inhibits the host-cell RNA polymerase. Chloramphenicol, an inhibitor of protein synthesis, does not block this conversion. The next stage in phage DNA replication, multiplication of the doublestranded forms, is also inhibited by rifampicin; chloramphenicol, although inhibitory, has a much smaller effect. An E. coli mutant whose RNA polymerase is resistant to rifampicin action does not show inhibition of M13 DNA replication by rifampicin. These findings indicate that a specific rifampicin-RNA polymerase interaction is responsible for blocking new DNA synthesis. It now seems plausible that RNA polymerase has some direct role in the initiation of DNA replication, perhaps by forming a primer RNA that serves for covalent attachment of the deoxyribonucleotide that starts the new DNA chain.
关键词:DNA replication ; chloramphenicol ; replicative form ; rifampicin ; single-stranded DNA