期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1974
卷号:71
期号:2
页码:474-478
DOI:10.1073/pnas.71.2.474
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:The translational diffusion coefficient and the partition coefficient of a spin-labeled solute, di-t-butyl nitroxide, in an aqueous suspension of dipalmitoyl lecithin vesicles have been studied by electron spin resonance spectroscopy. When the lecithin is cooled through its phase transition temperature near 41{degrees}C, some solute is "frozen out" of the bilayer, and the standard partial molar enthalpy and entropy of partition go more positive by a factor of 8 and 6, respectively. However, the apparent diffusion constant in the lecithin phase is only slightly smaller than that in water, both above and below the transition temperature. The fraction of bilayer volume within which solute is distributed may increase with temperature, contributing to the positive enthalpy of partition. Comparison of time constants suggests that there is a permeability barrier to this solute in the periphery of the bilayer.