期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1975
卷号:72
期号:8
页码:3044-3048
DOI:10.1073/pnas.72.8.3044
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Escherichia coli tRNA has been modified by replacement of the 3'-terminal AMP with either 3'-amino-3'-deoxy AMP of 2'-amino-2'-deoxy AMP. These tRNA analogs have enabled us to determine the initial site of enzyme-catalyzed aminoacylation of different tRNAs by the formation of aminoacyl-tRNA molecules in which the amino acid is linked to the 3'-terminal ribose through a stable amide bond. The tRNA species specific for glutamic acid, glutamine, leucine, phenylalanine, tyrosine, and valine are all aminoacylated on the 2'-hydroxyl group. The tRNA species specific for alanine, asparagine, aspartic acid, glycine, histidine, lysine, and threonine are aminoacylated on the 3'-hydroxyl group. The amino acids arginine, isoleucine, methionine, proline, serine, and tryptophan form stable amide bonds with both amino tRNA analogs. This might suggest that the synthetases for these amino acids can acylate both the 2'- and 3'-hydroxyl groups, but it is more likely that these enzymes can acylate both hydroxyl and amino groups at either the 2' or 3'-position of the tRNA. These results clearly illustrate a fundamental heterogeneity which is apparent in the mechanism of action of aminoacyl-tRNA synthetases.