期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1977
卷号:74
期号:11
页码:4772-4776
DOI:10.1073/pnas.74.11.4772
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:ATP-dependent DNA supercoiling catalyzed by Escherichia coli DNA gyrase was inhibited by oxolinic acid, a compound similar to but more potent than nalidixic acid and a known inhibitor of DNA replication in E. coli. The supercoiling activity of DNA gyrase purified from nalidixic acid-resistant mutant (nalAR) bacteria was resistant to oxolinic acid. Thus, the nalA locus is responsible for a second component needed for DNA gyrase activity in addition to the component determined by the previously described locus for resistance to novobiocin and coumermycin (cou). Supercoiling of {lambda} DNA in E. coli cells was likewise inhibited by oxolinic acid, but was resistant in the nalAR mutant. The inhibition by oxolinic acid of colicin E1 plasmid DNA synthesis in a cell-free system was largely relieved by adding resistant DNA gyrase. In the absence of ATP, DNA gyrase preparations relaxed supercoiled DNA; this activity was also inhibited by oxolinic acid, but not by novobiocin. It appears that the oxolinic acid-sensitive component of DNA gyrase is involved in the nicking-closing activity required in the supercoiling reaction. In the presence of oxolinic acid, DNA gyrase forms a complex with DNA, which can be activated by later treatment with sodium dodecyl sulfate and a protease to produce double-strand breaks in the DNA. This process has some similarities to the known properties of relaxation complexes.
关键词:Escherichia coli ; DNA supercoiling ; oxolinic acid ; colicin E1 DNA replication