首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Acetylcholine-receptor-mediated ion flux in electroplax membrane microsacs (vesicles): Change in mechanism produced by asymmetrical distribution of sodium and potassium ions
  • 本地全文:下载
  • 作者:George P. Hess ; Stanley Lipkowitz ; Gary E. Struve
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1978
  • 卷号:75
  • 期号:4
  • 页码:1703-1707
  • DOI:10.1073/pnas.75.4.1703
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The kinetics of acetylcholine-receptor-mediated efflux of inorganic ions from electroplax microsacs of Electrophorus electricus in the presence of varying alkali metal ion concentrations on both sides of the membrane have been investigated. The efflux, a monophasic process when the ion distribution is symmetrical (the same concentrations and types of ions on both sides of the membrane), becomes a biphasic process, consisting of a very rapid initial release of ions followed by a slower first-order process, under conditions that resemble the physiological state of the neural membrane (potassium ions inside the microsacs and sodium ions on the outside). The initial phase of the efflux discriminates between calcium and sodium ions and is inhibited by potassium ions in the external solution. The rate constant associated with this phase is at least 40 times larger than the rate constant associated with the slower efflux. Both phases depend on the concentration of acetylcholine or carbamoylcholine, and are inhibited by receptor inhibitors (d-tubocurarine and -bungarotoxin). A simple model is proposed which relates the kinetics of the flux to ligand-induced conformational changes in the receptor. We also indicate the relationship between the biphasic kinetics of the flux observed in microsacs to "desensitization," the phenomenon in which, on addition of acetylcholine, the transmembrane voltage of muscle and nerve cells first increases and then decreases to its resting value within a few seconds.
  • 关键词:asymmetrical physiological distribution of ions ; ion flux mechanism ; excitability ; “desensitization”
国家哲学社会科学文献中心版权所有