期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1978
卷号:75
期号:5
页码:2117-2121
DOI:10.1073/pnas.75.5.2117
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:The transduction of an Escherichia coli gene into mammalian cells is described. A supressor tRNA gene was linked to a simian virus 40 (SV40) vector in vitro and the recombinant was used to transfect rat embryo cells and monkey kidney cells. The hybrid SV40 genome, SV40-su+ III, retained genetic information required for autonomous replication and cellular transformation and had a 1300-base-pair DNA segment in the late gene region (between the restriction endonuclease sits Hpa II at 0.735 and EcoRI at 0/1.0 on the SV40 genetic map) replaced by an 870-base-pair bacterial DNA segment containing the suppressor tRNA gene, su+ III (tRNATyrsu+III). The structure and fate of the SV40-su+III chimera were determined by DNA reassociation kinetic analysis and restriction enzyme cleavage of the total cellular DNA from transformed rat embryo cells and persistently infected monkey cells. Hybridization with radiolabeled probes specific for vector (SV40) or su+III DNA sequences revealed primarily nonintegrated or free hybrid genomes. In cloned lines of both cell types, the bacterial DNA segment was recovered intact, as judged by the length of the segment excised by restriction endonucleases and its ability to hybridize to the radiolabeled bacterial DNA probe and not to the SV40 probe.