期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:1979
卷号:76
期号:2
页码:722-725
DOI:10.1073/pnas.76.2.722
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:The adenosine 3",5"-monophosphate (cAMP)-dependent ATPase (ATP phosphohydrolase, EC 3.6.1.3 ) activity of cAMP-dependent protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37 ) from bovine heart is characterized. That the ATPase activity is intimately associated with the catalytic subunit of the enzyme is suggested by the following: (i) the similar dependences of ATPase and protein kinase activities on cAMP; (ii) the dissociation of ATPase activity from the holoenzyme on addition of cAMP and its co-elution with the catalytic subunit on gel filtration chromatography; (iii) the similarity of the relative effectiveness of divalent metal ions in ATPase and protein kinase catalysis; and (iv) the correspondence of kinetically determined Km(MgATP) and Ki(MgADP) values with thermodynamic dissociation constants determined by equilibrium dialysis. The hydrolysis of ATP is stimulated 10- to 20-fold by cAMP in the holoenzyme. The molar specific activity of the catalytic subunit ATPase is approximately 0.7 min-1 with Km(MgATP) = 5 muM. MgADP is a competitive inhibitor of the reaction with a Ki value of approximately muM. The order of the relative effectiveness of metal ions for both ATPase and peptide kinase activities is Mg2+ greater than Mn2+ greater than Ca2+. A possible interpretation of these observations is that the role that the metal ion plays is more directly manifested in bond-breaking than in bond-forming.