首页    期刊浏览 2024年09月20日 星期五
登录注册

文章基本信息

  • 标题:Exogenous vascular endothelial growth factor induces malformed and hyperfused vessels during embryonic neovascularization
  • 本地全文:下载
  • 作者:C J Drake ; C D Little
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:1995
  • 卷号:92
  • 期号:17
  • 页码:7657-7661
  • DOI:10.1073/pnas.92.17.7657
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Vascular endothelial growth factor (VEGF) is a potent and specific endothelial mitogen that is able to induce angiogenesis in vivo [Leung, D. W., Cachianes, G., Kuang, W.-J., Goeddel, D. V. & Ferrara, N. (1989) Science 246 1306-1309]. To determine if VEGF also influences the behavior of primordial endothelial cells, we used an in vivo vascular assay based on the de novo formation of vessels. Japanese quail embryos injected with nanomolar quantities of the 165-residue form of VEGF at the onset of vasculogenesis exhibited profoundly altered vessel development. In fact, the overall patterning of the vascular network was abnormal in all VEGF-injected embryos. The malformations were attributable to two specific endothelial cell activities: (i) inappropriate neovascularization in normally avascular areas and (ii) the unregulated, excessive fusion of vessels. In the first instance, supernumerary vessels directly linked the inflow channel of the heart to the aortic outflow channel. The second aberrant activity led to the formation of vessels with abnormally large lumens. Ultimately, unregulated vessel fusion generated massive vascular sacs that obliterated the identity of individual vessels. These observations show that exogenous VEGF has an impact on the behavior of primordial endothelial cells engaged in vasculogenesis, and they strongly suggest that endogenous VEGF is important in vascular patterning and regulation of vessel size (lumen formation).
国家哲学社会科学文献中心版权所有