首页    期刊浏览 2025年02月26日 星期三
登录注册

文章基本信息

  • 标题:Variations on a Theme by Neyman and Pearson
  • 本地全文:下载
  • 作者:.S. Borkar ; Tata Institute of Fundamental Research, Mumbai ; INDIA S.K. Mitter
  • 期刊名称:Sankhya. Series A, mathematical statistics and probability
  • 印刷版ISSN:0976-836X
  • 电子版ISSN:0976-8378
  • 出版年度:2004
  • 卷号:66
  • 期号:02
  • 出版社:Indian Statistical Institute
  • 摘要:A symmetric version of the Neyman-Pearson test is developed for discriminating between sets of hypotheses and is extended to encompass a new formulation of the problem of parameter estimation based on finite data sets. Such problems can arise in distributed sensing and localization problems in sensor networks, where sensor data must be compressed to account for communication constraints. In this setting it is natural to focus on methods that balance coarse resolution of the estimates for achieving higher reliability.
  • 关键词:Multiple hypothesis testing, parametric inference, minmax, convex optimization.
国家哲学社会科学文献中心版权所有