首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Two-step Regression Quantiles
  • 本地全文:下载
  • 作者:Jana Jure\v{c}kov\'a ; Charles University in Prague ; Czech Republic Jan Picek
  • 期刊名称:Sankhya. Series A, mathematical statistics and probability
  • 印刷版ISSN:0976-836X
  • 电子版ISSN:0976-8378
  • 出版年度:2005
  • 卷号:67
  • 期号:02
  • 出版社:Indian Statistical Institute
  • 摘要:We propose a new version of the regression $\alpha$-quantile in the linear regression model, ordering the residuals with respect to an initial R-estimate of the slope parameter. In this way we obtain a consistent estimator of $(\beta_0+F^{-1}(\alpha),\beta_1,\ldots,\beta_p)^{\prime},$ asymptotically equivalent to the regression $\alpha$-quantile of Koenker and Bassett. The result is extended to the extreme regression quantiles. Similarly we construct a version of the autoregression quantile in the linear AR($p$) model. We also propose an estimate of the extreme error in the linear regression and autoregression models, using the initial R-estimate of the slope. A simulation experiment illustrates a very small difference between the original regression quantiles and their new versions, and a very good approximation of the extreme errors.
  • 关键词:Autoregression quantile, extreme value, extreme regression quantile, regression quantile, R-estimator.
国家哲学社会科学文献中心版权所有