首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Computational Issues for Quantile Regression
  • 本地全文:下载
  • 作者:Colin Chen ; SAS Institute Inc. Cary, NC ; USA Ying Wei
  • 期刊名称:Sankhya. Series A, mathematical statistics and probability
  • 印刷版ISSN:0976-836X
  • 电子版ISSN:0976-8378
  • 出版年度:2005
  • 卷号:67
  • 期号:02
  • 出版社:Indian Statistical Institute
  • 摘要:In this paper, we discuss some practical computational issues for quantile regression. We consider the computation from two aspects: estimation and inference. For estimation, we cover three algorithms: simplex, interior point, and smoothing. We describe and compare these algorithms, then discuss implementation of some computing techniques, which include optimization, parallelization, and sparse computation, with these algorithms in practice. For inference, we focus on confidence intervals. We discuss three methods: sparsity, rank-score, and resampling. Their performances are compared for data sets with a large number of covariates.
  • 关键词:Quantile regression, host optimization, multithreading, sparse computing, smoothing algorithm, simplex, interior point, median regression, linear programming, preprocessing.
国家哲学社会科学文献中心版权所有