摘要:Spatial segregation among life-cycle stages has been observed in many stage-structured species, including species of the flour beetle Tribolium . We investigate density-dependent dispersal of life-cycle stages as a possible mechanism responsible for this separation. We explore this hypothesis using stage-structured, integrodifference equation (IDE) models that incorporate density-dependent dispersal kernels. We first investigate mechanisms that can lead to spatial patterns in juvenile–adult IDE models. We show, via numerical simulation, that density-dependent dispersal can lead to the spatial segregation of life-cycle stages in the sense that each stage peaks in a different spatial location. We then construct a three-stage spatial model to describe the population dynamics of Tribolium castaneum and Tribolium confusum and assess density-dependent dispersal mechanisms that are able to explain spatial patterns that have been experimentally observed in these species.
关键词:density-dependent dispersal; spatial patterns; segregation of life-cycle stages; integrodifference equations; population dynamics